

вариант сепарированная передача

ТР – комплектная точность

М вариант передача устанавливаемая на двигателе

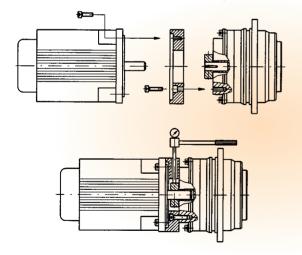
ТР – планетарная передача с наименьшим зазором

К вариант Мугловая передача

	рведение	2	 ₽
	Вариант [М] устанавливаемый на двигателе	3	æ
	Технические параметры Размеры Моменты инерции массы и быстрый подбор передачи		
	Вариант [S] сепарированный	7	
	Технические параметры Размеры Моменты инерции массы и быстрый подбор передачи		
	Вариант [К] угловой	11	> -{-[∰
	Технические параметры Размеры Моменты инерции массы и быстрый подбор передачи		
	Проектирование		
a)	Варианты установки Подбор передачи / работа в циклическом режиме S5 Подбор передачи / работа в непрерывном режиме S1 Буквенное обозначение применяемое в формулах расчет подшипников	15 16 18 19 20	
Z H	Возможность работы Принцип заказывания передач Примеры установки и применений	21 22 24	

Комплектная точность

Планетарные передачи alpha с наименьшим зазором в сочетании с сервомоторной техникой применяются в роботах, автоматизированных устройствах, обрабатывающих станках, упаковочных и печатных автоматах, как для работы с высоко динамизированным позиционарованием, так и в непрерывном режиме.


Конструкция планетарных передач ТР позволяет им быть особенно пригодными для приводных решений, перед которыми ставятся самые высокие требования относительно точности и безотказности:

Отличное качество

- Большая прочность и совершенная стабильность зазоров, полученные благодаря оптимизированным, шлифованным зубчатым венцам и материалам высшей прочности
- Совершенное приспособление к работе в циклическом режиме с высокой динамикой (S5), а также безотказного действия в непрерывном режиме (S1).
- Максимальное обеспечение качества путем 100% конечного контроля.

Продуманная концепция

- Высокий коэффициент полезного действия и незначительный момент инерции планетарных передач дают возможность высокодинамического привода с нормализованным вкладом энергии
- Благодаря этому передачи alpha разрешают экономить природные ресурсы и содействуют охране окружающей среды.
- Таким способом alpha предлагает своим клиентам решения по приводам направленные на будущее.

Новаторская техника

- Гениально простое, патентованное соединение с двигателем с интегрированной термической компенсацией длины.
- Творческие решения в области конструкции и самого исполнения обеспечивают ведущее место в технологии
- Перспективные технологии исполнения гарантируют точность и самый высокий стандарт качества.

Модульная программа планетарных передач

- Базой всех типов планетарных передач alpha являются стандартизированные блоки.
- Модульные соединители адаптеры дают возможность простого, уверенного и быстрого соединения передач с практически любым двигателем
- Нормализованная в alpha геометрия стороны приема привода обеспечивает соответствие всех вариантов передач.

Равноправные отношения в мировом масштабе

- Охватывающая своим диапазоном весь мир сеть продажи и сервиса гарантирует компетентную поддержку клиента в любом месте земного шара.
- Отсутствие необходимости техухода и смазка на весь период эксплуатации точно отвечают требованиям рынка относительно минимализации сервисных работ.
- Самая высокая надежность, также при экстремальных требованиях, дарит уверенность клиентам во всем мире.

Вариант ТР М

Свойства изделия

Исключительно бесшумный ход передачи

благодаря применению единственной

кинематики такого рода

Высокая крутильная жесткость благодаря фланцевому исполнению

Большая пространственная компактность благодаря интегрированной конструкции

Высокая динамика достигаемая

благодаря замкнутой конструкции и вместе с тем низкие моменты

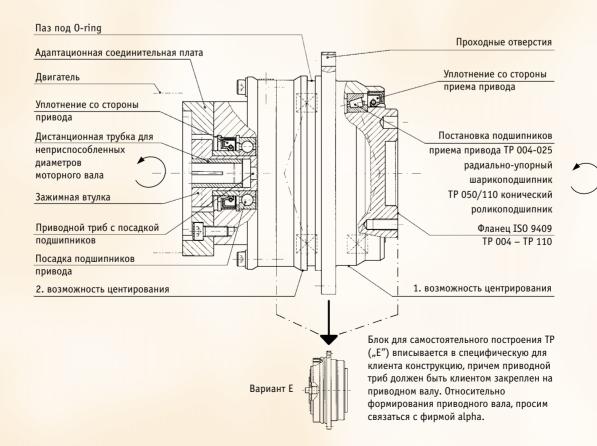
Самая высокая точность позиционирования достигается благодаря небольшим зазорам и крутильной жесткости

> Необыкновенно простой, патентованный монтаж к двигателю с интегрированной термической компенсацией длины

Отличное приспособление к работе в циклическом режиме с высокой динамикой (S5), а также безотказному действию в непрерывном режиме

(S1) благодаря интеллигентной конструкции

Благодаря применению модульных соединительных деталей - адаптеров имеется возможность универсального подключения к практически всем типам двигателей; разрешаемые допуски двигателей N по DIN 42955


Смазка синтетическим маслом дает возможность установки в любом положении

Большая плавность и равномерность действия, а также высокий коэффициент полезного действия достигаются из-за оптимальной геометрии зубчатого

Минимальный крутильный зазор получаемый путем попарного подбора допуска без напряжений

зацепления и отделки высшего качества

Детали изделия

Пересчетная таблица:

1 in.lb = 0.113 Nm 1 in.lb.s² = 1130 kgcm² 1 lb_f = 4.44 N = 0.4535 kg1 lb_m

Технические параметры

Конструкционная вел	ичина			TP 004	TP 010	TP 025	TP 050	TP 110	TP 300	TP 500
Максимальный	T_{2B}	Nm	i = 5, 7, 31	40	100	300	650	-	-	-
момент ускорения ¹⁾			i = 10, 21, 61, 91	32	80	250	500	-	-	-
			i = 5, 7, 10, 21	-	-	-	-	1100	-	-
			i = 31	-	-	-	-	1600	3500	6000
			i = 61, 91	-	-	-	-	1300	2800	4800
Критический момент ²⁾	T _{2Not}	Nm		100	250	625	1250	2750	8750	15000
Номинальный	T _{2N}	Nm	i = 5, 7, 31	25	50	170	370	-	-	-
вращающий момент			i = 10, 21, 61, 91	15	35	100	220	-	-	-
на приеме			i = 5, 7, 10, 21	-	-	-	-	640	-	-
			i = 31	-	-	-	-	1230	2200	3700
			i = 61, 91	-	-	-	-	700	1600	2900
Максимальная	п _{1макс.}	мин ⁻¹	1-ступенчатая	6000	6000	4500	4000	3500	-	-
скорость вращения			2-ступенчатая	0000	0000	6000	5000	4500	3000	3000
Номинальная	n _{1N}	мин ⁻¹	i = 5, 7	3000	2500	2000	1600	1100	-	-
скорость вращения			i = 10	3500	3000	2500	2100	1600	-	-
на приеме ³⁾			i = 21, 31	4500	3800	3100	2600	2100	1600	1300
			i = 61	6000	4700	3700	3300	2600	1900	1500
			i = 91	6000	5300	4500	4100	3300	2200	1800
Передаточные	i		1-ступенчатая			5 / 7 / 10			-	-
отношения 4)			2-ступенчатая		21	/31/61/	91		31 / 6	1 / 91
Крутильный зазор j _t		агсмин	стандартный	≤ 5			<	3		
			сокращенный	≤ 3		<	1		-	-
Крутильная	C _{t21}	Nm/агсмин	1-ступенчатая і= 5	9,5	31	85	171	438	-	-
жесткость			2-ступенчатая і= 91	6,5	17	43	88	280	560	736
Макс. осевая сила ⁵⁾	F _{2AMaκc} .	N		1630	2150	4150	6130	10050	33000	50000
Макс. изгиб. момент	M _{2KMakc} .	Nm		91	235	413	1295	3064	5900	8800
Вращающий момент	T ₀₁₂	Nm	i = 5	0,30	1,01	2,23	5,6	13,0		
холостого хода ⁶⁾			i = 31	0,15	0,25	0,59	1,3	2,80		
(n ₁ =3000 мин ⁻¹)			i = 91	0,08	0,23	0,30	1,1	2,00		
Устойч. к изгибанию	C _{2K}	Nm/агсмин		-	225	550	560	1452	5560	9480
Коэффициент	η	%	1-ступенчатая			≥ 96				-
попезного пействия п	ри полно	й нагрузке	2-ступенчатая				≥ 93			
полезного действия г		КГ	1-ступенчатая	1,2	2,6	4,6	9,6		24,0	-
_	M				2,8	4,7	9,7	24,1	55	85
_	М		2-ступенчатая	1,3	2,0	7,7	٥,,	- 1/-		
Bec	М		2-ступенчатая						ости ISO VG	220
Вес Смазка	М		2-ступенчатая			передаточн		лассом вязк	ости ISO VG	220
Вес Смазка Лак	М		2-ступенчатая			передаточно гол	ре масло с к	лассом вязк 002	ости ISO VG	220
Вес Смазка Лак Рабочие положения			2-ступенчатая			передаточно гол любое, пр	ре масло с к убой RAL 50	лассом вязк 002 ъ в заказе	сости ISO VG	220
Вес Смазка Лак Рабочие положения Предельная рабочая те	емператур		2-ступенчатая		тетическое	передаточно гол любое, пр –:	ое масло с к убой RAL 50 осим указат 10°C до +90	лассом вязк 002 ъ в заказе		220
Вес Смазка Лак Рабочие положения Предельная рабочая те Направление вращені	емператур		2-ступенчатая		тетическое	передаточно гол любое, пр –:	ое масло с к убой RAL 50 осим указат 10°C до +90 вление дви	классом вязк 2002 ъ в заказе °С		220
Вес Смазка Лак Рабочие положения Предельная рабочая те Направление вращені Степень защиты	емператур		2-ступенчатая		тетическое	передаточно гол любое, пр –:	ое масло с к убой RAL 50 осим указат 10°C до +90 вление дви IP 64	классом вязк 2002 ъ в заказе °С		220

^{1) 1000} циклов в час.

Варианты I и II отличаются размерами 2-ступенчатой передачи. Это различие основано на выборе соотношения диаметра моторного вала и диаметра зажимной втулки (D10), в зависимости от которого в рамках одной конструкционной величины изменяются размеры, указанные на рис. 1 и 2 (D11, L11, L14, L15,

Благодаря этой конструкционной разнице предлагаем клиенту передачу (рис. 1) с очень небольшим моментом инерции массы и передачу (рис. 2), которая может содействовать с более мощным двигателем.

рис. 1 (вариант I) Очень небольшой момент инерции массы

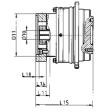
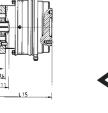



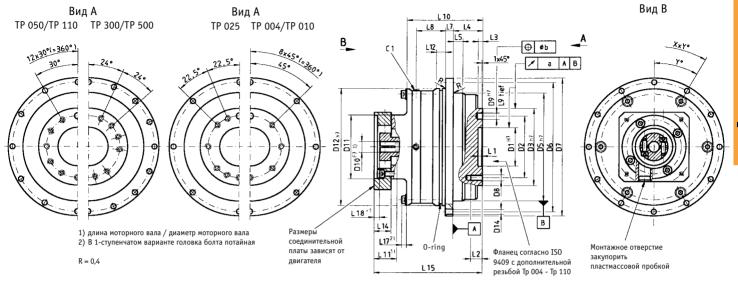
рис. 1 (вариант II) Возможность установки более мощного двигателя

вариант I

вариант II

 $^{^{2)}}$ Допускается 1000 раз во время срока годности.

³⁾ При температуре окружающей среды 20°C (при высших наружних температурах скорости вращения п_{1N} следует сократить). В случае применения SI по вопросу условий просим связаться с alpha.


 $^{^{4)}}$ Следующие передаточные отношения - смотри: Возможности работы.

⁵⁾ Относительно середины фланца.

⁶⁾ При рабочей температуре 20°C.

#

Размеры [мм]

Конструкционная велич	ина ТР		TP		TP (TP (TP :		TP 300	TP 500
Ступени передачи	1	2	1	2	1	2	1	2	1	2	2	2
a	0,0	03	0,0	03	0,0	03	0,0)3	0,0	04	0,05	0,05
b	0,0	02	0,0	02	0,0	02	0,0)2	0,0	02	-	-
C1		1)	3xM	8x1	3xM	8x1	3xM	8x1	3xM1	2x1,5	4xM12x1,5	4xM14x1,
D1 H7	2	0	31	.,5	4	0	5	0	8	0	0	0
D2	31	,5	5	0	6	3	8	0	12	25	140	160
D3 h7	4	0	6	3	8	0	10	0	16	50	180	200
D5 h7	6	4	9	0	11	10	14	0	20	00	255	285
D6	7	9	10)9	13	35	16	8	23	33	280	310
D7	8		11		14	4 5	17		24	7	300	330
D8	7xl	M5	7x	M6	11x	M6	11x	:M8	11xl	M10	12xM16	12×M20
D9 H7	5	5	(5	6	5	8	3	1	0	0	0
D10 ²⁾ F7 Вариант I	макс. 14	макс. 11	макс. 19	макс. 11	макс. 28	макс. 14	макс. 35	макс. 19	макс. 48		макс. 35	макс. 48
Вариант II	-	-	-	макс. 14	-	макс. 19	-	макс. 24	-	макс. 35	-	-
D11 ²⁾ Вариант I	69,5	69,5	94	70	119	70	151	83	211	120	□140	□190
относительно D10 Вариант II	-	-	-	70	-	90	-	110	-	152	-	-
D12 h7	7		9	5	12	20	15	52	21	12	255	285
D14	8x4	4,5	8x	5,5	8x!	5,5	12x	6,6	12	x9	16x13,5	16x13,5
L1	4	4	(5	6	5	ϵ	j	8	3	0	0
L2	7	7	1	0	1	2	1	5	2	0	25	30
L3	3	3	(5	6	5	6	j	8	3	12	15
L4	19),5	3	0	2	9	3	8	5	0	66	75
L5	7	7	1		1	0	1	2	1	5	20	20
L7	4	'	-		8	3	1	0	1	2	18	20
L8		-	2	7	3	3	3	8	4	7	63,4	70
L9	ć	5	7	7	7	7	7	,	1	0	0	0
L10	54	65	7	3	83	79	106	98	136,5	124,5	158	175
L11 ²⁾ мин. Вариант I	14	12,5	23	15	30	15	32	23	45	30	32	45
относительно D10 Вариант II	-	-	-	15	-	23	-	30	-	32	_	-
L11 ²⁾ макс.Вариант I	30	23	40	30	50	30	60	40	82	50	60	82
относительно D10 Вариант II	-	-	-	30	-	40	-	50	-	60	-	-
L12	7,	,7	1	0	10	0	1	2	1	5	20	20
L14 ²⁾ Вариант I	15	12	22	15	28	15	30,5	22	37,5	28	30,5	37,5
относительно D10 Вариант II	-	-	-	15	-	22	-	28	-	30,5	-	-
L15 ²⁾ Вариант I	69	77	95	100	111	109,5	136,5	140	174	173,5	277	327
относительно D10 Вариант II	-	-	-	104,5	-	121,5	-	152	-	188	-	-
L17	0	0	0	5	0	6,2	0	7,5	0	10	6	3
L18 ²⁾ +1 Вариант I	4	3,5	7,5	3,8	7	3,8	9	6,4	8,5	6,4	7	10
относительно D10 Вариант II	-	-	-	4,0	-	6,1	-	6,9	-	5,0	-	-
OD	66	x2	90	x3	110	Ox3	145	ix3	200)x5	238x5	270x6
Χ	8	3	{	3	8	3	1	2	1	2	16	16
Υ	4	5	4	5	4	5	3	0	3	0	22,5	22,5

¹⁾ без болта спуска масла

²⁾ размеры в зависимости от двигателя

Моменты инерции массы J_1 [КГСМ 2] в отношении привода

Величина	Ø вала	Передаточное соотношение і 1-ступенчатое			Передаточное соотношение i2-ступенчатое			
передачи	[MM]	5	7	10	21	31	61	91
TP 004	≤ 11	0,136	0,110	0,096	0,058	0,056	0,053	0,052
	> 11 ≤ 14	0,166	0,140	0,126	-	-	-	-
TP 010	≤ 10	-	-	-	0,13	0,12	0,09	0,09
	> 10 ≤ 11	0,56	0,45	0,39	0,12	0,11	0,09	0,09
	> 11 ≤ 14	0,61	0,49	0,43	0,17	0,16	0,14	0,14
	> 14 ≤ 19	0,65	0,54	0,48	-	-	-	-
TP 025	≤ 11	-	-	-	0,20	0,17	0,12	0,12
	> 11 ≤ 14	1,90	1,51	1,30	0,23	0,20	0,15	0,15
	> 14 ≤ 19	2,00	1,62	1,41	0,52	0,49	0,44	0,44
	> 19 ≤ 24	2,66	2,27	2,06	-	-	-	-
	> 24 ≤ 28	3,39	3,00	2,79	-	-	-	-
TP 050	≤ 11	-	-	-	0,71	0,60	0,40	0,39
	> 11 ≤ 14	-	-	-	0,75	0,65	0,45	0,44
	> 14 ≤ 19	5,22	3,66	2,99	0,80	0,69	0,49	0,48
	> 19 ≤ 24	5,79	4,24	3,56	2,28	2,17	1,97	1,96
	> 24 ≤ 32	8,63	7,08	6,41	-	-	-	-
	> 32 ≤ 35	8,47	6,92	6,25	-	-	-	-
TP 110	≤ 14	-	-	-	2,89	2,33	1,45	1,38
	> 14 ≤ 19	-	-	-	2,99	2,43	1,56	1,49
	> 19 ≤ 24	-	-	-	3,63	3,07	2,20	2,14
	> 24 ≤ 28	-	-	-	4,09	3,53	2,78	2,72
	> 28 ≤ 32	32,04	23,43	19,0	-	-	-	-
	> 32 ≤ 35	-	-	-	7,18	6,61	5,73	5,67
	> 35 ≤ 38	32,93	24,32	19,89	-	-	-	-
	> 38 ≤ 48	36,61	28,00	23,57	-	-	-	-
TP 300	≤ 35	-	-	-	-	15,0	12,2	12,0
TP 500	≤ 48	-	-	-	-	43,6	37,1	36,7

Быстрый подбор передачи

Более подробный подбор передачи – смотри: стр. 16 по 20

Циклическое действие S5 (касается количества циклов < 1000)	1. Определение макс. момента ускорения двигателя Т _{1RMot} [Nm]	 Сравнение диаметра моторного вала D_{Mot} [mm] с размером D10 [мм] D_{Mot} ≤ D10
время включения < 60%	2. Определение макс. момента ускорения, появляющегося во время приема с передачи T_{2b} [Nm] $T_{2b} = T_{1BMot} \times i$ 3. Сравнение макс. появляющегося момента ускорения T_{2b} [Nm] с макс. допускаемым моментом ускорения T_{2b} [Nm] при приеме привода $T_{2b} \leq T_{2B}$	Бмоt ч б во 5. Сравнение длины моторного вала LMot L _{Mot} [мм] с размером L11 [mm] L11 _{min} ≤ L _{Mot} ≤ L11 _{max}
Работа в непрерывном режиме S1 (следует применять уплотнительные прокладки фирмы Viton, укажите в заказе) время включения ≥ 60 %	 Определение номинального момента двигателя	 Сравнение появляющейся скорости вращения привода n_{1n} [мин⁻¹] с допускаемой номинальной скоростью вращения n_{1N} [мин⁻¹] n_{1n} ≤ n_{1N} Сравнение диаметра моторного вала D_{Mot} [мм с размером D10 [mm] D_{Mot} ≤ D10 Сравнение длины моторного вала L_{Mot} [мм] с размером L11 [mm] L11_{min} ≤ L_{Mot} ≤ L11_{max}

Вариант TP S

Свойства изделия

Достижение экономии места благодаря параллельному размещению передачи

Высокая крутильная жесткость

благодаря фланцевому исполнению

Минимальный крутильный

зазор получаемый путем попарного подбора допуска без напряжений

Высокая динамика

достигаемая благодаря замкнутой конструкции и вместе с тем низкие моменты инерции

Самая высокая точность позиционирования достигается благодаря небольшим зазорам

и крутильной жесткости

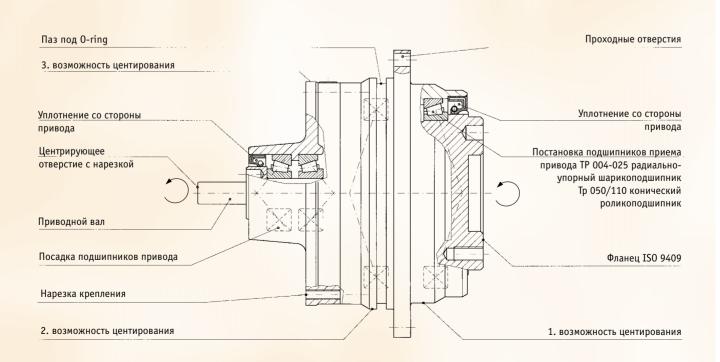
Высокая антиаварийная уверенность полученная благодаря прочному зубчатому зацеплению и крепкой посадке подшипников Большая пространственная сжатость благодаря интегрированной конструкции

Исключительно бесшумный ход передачи

благодаря применению единственной кинематики такого рода

Отличное приспособление к работе в циклическом режиме с высокой динамикой (S1), а также безотказному действию в непрерывном режиме (S1)

благодаря интеллигентной конструкции


Смазка синтетическим маслом дает возможность установки в любом положении

Большая плавность и равномерность действия, а также высокий коэффициент полезного действия

достигаются из-за оптимальной геометрии зубчатого зацепления и отделки высшего качества

Несложный монтаж благодаря применению со стороны привода нарезки крепящей к фланцу сцепления

Детали изделия

Пересчетная таблица 1 in.lb = 0.113 Nm 1 in.lb.s² = 1130 kgcm² 1 lb_f = 4.44 N 1 lb_m = 0.4535 kg

Технические параметры

Конструкционная велич	нина			TP 010	TP 025	TP 050	TP 110
Максимальный	T _{2B}	Nm	i = 5, 7, 31	100	300	650	-
момент ускорения ¹⁾			i = 10, 21, 61, 91	80	250	500	-
			i = 5, 7, 10, 21	-	-	-	1100
			i = 31	-	-	-	1600
			i = 61, 91	-	-	-	1300
Критический момент ²⁾	T _{2Not}	Nm		250	625	1250	2750
Номинальный	T _{2N}	Nm	i = 5, 7, 31	50	170	370	-
вращающий момент			i = 10, 21, 61, 91	35	100	220	-
на приеме			i = 5, 7, 10, 21	-	-	-	640
			i = 31	-	-	-	1230
			i = 61, 91	-	-	-	700
Максимальная	п _{1макс.}	мин ⁻¹	1-ступенчатая	6000	4500	4000	3500
скорость вращения			2-ступенчатая	0000	6000	5000	4500
Номинальная скорость	n _{1N}	мин ⁻¹	i = 5, 7	1300	1000	800	600
вращения на приеме 3)			i = 10	1500	1300	1100	800
			i = 21, 31	1900	1600	1300	1100
			i = 61	2400	1900	1700	1300
			i = 91	2700	2300	2100	1700
Передаточные	i		1-ступенчатая		5 / 7	/ 10	
отношения ⁴⁾			2-ступенчатая		21 / 31 /	61 / 91	
Крутильный зазор	j _t	агсмин	стандартный		€	3	
			сокращенный		€	1	
Крутильная жесткость	C _{t21}	₂₁ Nm/arcмин	1-ступенчатая і=5	31	85	171	438
	121	,	2-ступенчатая і=9:		43	88	280
Максимальная осевая сила на приеме ⁵⁾	F _{2Aмакс} .	N		2150	4150	6130	10050
	М _{2Кмакс.}	Nm		235	413	1295	3064
	M _{1Кмакс} .	Nm	1-ступенчатая	66	113	232	454
	ткмакс.		2-ступенчатая	23	26	66	113
Максимальная осевая	F _{1Amakc} .	N	1-ступенчатая	1150	1600	2700	4700
сила на приводе ⁵⁾	• ТАМАКС.	**	2-ступенчатая	900	950	1150	1600
Макс. радиальная	F _{1Rмакс.}	N	1-ступенчатая	1300	1900	3000	4500
сила на приводе ⁵⁾	ткмакс.	••	2-ступенчатая	500	550	1300	1900
Вращающий момент	Tota	Nm	i = 10	300	230	5	1500
колостого хода ⁶⁾	I ₀₁₂		. 10	i = 31	0,4		1,8
n ₁ =3000 мин ⁻¹)			i = 91	. 31	0,5		1,0
11—3000 мин) Коэффициент η	%		1-ступенчатая		> 0,5 ≥ <u>9</u>	95	
полезного действия прі		нагрузке	2-ступенчатая		> :		
Вес м	КГ		= 0.3	3,2	5,2	10,3	25,4
Смазка					ое передаточное мас		
Так Так				сиптетилеск	голубой		155 10220
так Рабочие положения					любое, просим у		
гаоочие положения Предельная рабочая тем	пепэтилэ	°C			люоое, просим у -10°С до		
				0.71	•••		21114
Направление вращения Стополь зашиты				ОДИ	наковое направлени тр	,	ачи
Степень защиты	1	nE/A\	1		IP.		<u> </u>
Громкость работы	L _{PA}	дБ(А)	1-ступенчатая	≤ 60		€ 7	
(n ₁ =3000 мин ⁻¹)			2-ступенчатая	≤ 6-	4	≤ 6	5

²⁾ Допускается 1000 раз во время срока годности.

3) При температуре окружающей среды 20°C (при высших наружних температурах скорости вращения п1N следует сократить). В случае применения SI по

вопросу условий просим связаться с alpha.
4) Следующие передаточные отношения – смотри: Возможности работы.

⁵⁾ Относительно середины фланца.

⁶⁾ При рабочей температуре 20°С.

Размеры [мм]

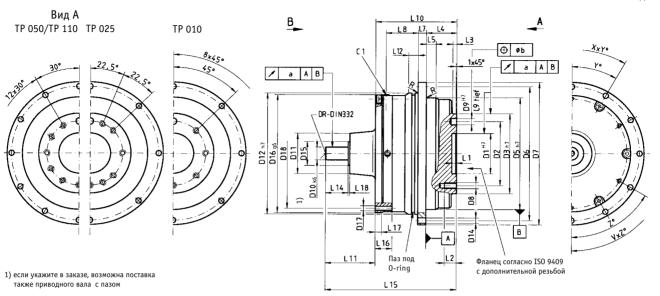
R

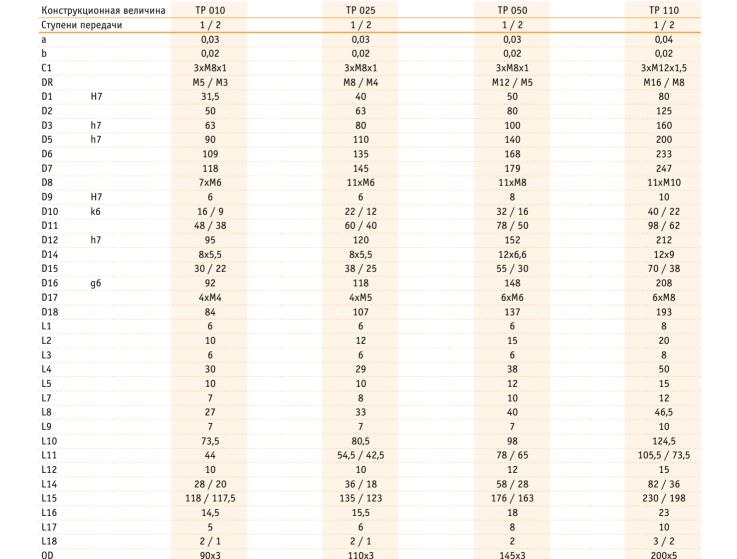
۷

Χ

Υ

Z


0,4


8

45

90

Вид В

0,4

4

8

45

90

0,4

6

12

30

60

0,4

6

12

30

60

Моменты инерции массы J_1 [кгсм 2] в отношении привода

Величина	Передаточно	е соотношение і 1	-ступенчатое	Передаточное соотношение і 2-ступенчатое				
передачи	5	7	10	21	31	61	91	
TP 010	0,53	0,42	0,36	0,09	0,08	0,06	0,06	
TP 025	1,61	1,23	1,02	0,20	0,16	0,12	0,11	
TP 050	5,84	4,28	3,60	0,67	0,56	0,36	0,35	
TP 110	28,34	19,60	15,17	2,48	1,92	1,04	0,97	

Быстрый подбор передачи

Более подробный подбор передачи – смотри: стр. 16 по 20

	1.0	0.6
Циклическое действие \$5	1. Определение макс. момента ускорения	3. Сравнение макс. появляющегося момента
(касается количества циклов ≤ 1000)	двигателя	ускорения T _{2b} [Nm] с макс. допускаемым
	T _{1BMot} [Nm]	моментом ускорения T _{2B} [Nm] при приеме
время включения а < 60 %	2. Определение макс. момента ускорения,	привода от передачи
	появляющегося во время приема привода с	$T_{2b} \leq T_{2B}$
	передачи T _{2b} [Nm]	
	$T_{2b} = T_{1BMot} \times i$	
Работа в непрерывном режиме S1	1. Определение номинального момента двигателя	4. Определение отмеченной скорости вращения
(следует применять уплотнительные	T _{1NMot} [Nm]	привода
прокладки фирмы Viton, укажите	2. Определение номинального вращат. мом. T2n [Nm]	п _{1п} [мин ⁻¹]
в заказе)	появляющегося во время приема привода от передачи	
	$T_{2n} = T_{1NMot} x i$	5. Сравнение появляющейся скорости вращения
время включения ≥ 60 %	3. Сравнение появляющегося номин. вращат. мом. T _{2n}	привода n _{1n} [мин ⁻¹] с допускаемой номинальной
	[Nm] с допускаемым номинальным вращат. мом.	скоростью вращения n _{1N} [мин ⁻¹]
	T _{2N} [Nm] во время приема привода от передачи	n _{1n} ≤ n _{1N}
	$T_{2n} \leq T_{2N}$	

Вариант ТР К

Свойства изделия

Возможность универсального соединения с двигателем с помощью модульных соединителей —

адаптеров. Возможный допуск двигателя

N согласно DIN 42955

Смазка синтетическим маслом дает возможность установки в любом положении

Большая плавность и равномерность действия, а также высокий коэффициент полезного действия достигаются из-за оптимальной геометрии

зубчатого зацепления и отделки высшего качества

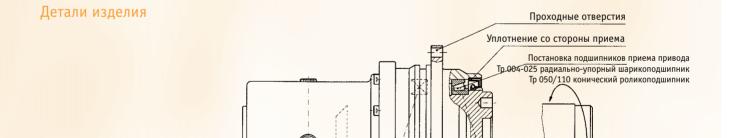
Высокая динамика достигаемая благодаря замкнутой конструкции и вместе с тем низкие моменты инерции

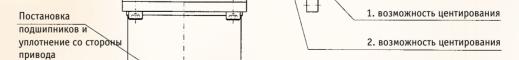
Высокая антиаварийная уверенность достигнута благодаря устойчивому зубчатому зацеплению и прочной постановке подшипников

Необыкновенно простой, патентованный монтаж к двигателю с интегрированной термической компенсацией длины Исключительно бесшумный ход передачи благодаря применению единственной кинематики такого рода

Высокая крутильная жесткость благодаря фланцевому исполнению

Большая пространственная компактность благодаря интегрированной конструкции

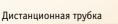

Достижение экономии места благодаря перпендикулярной конфигурации передачи

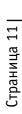

Отличное приспособление к работе в циклическом режиме с высокой динамикой (S5), а также безотказному действию в непрерывном режиме (S1) благодаря интеллигентной конструкции

Фланец ISO 9409

Самая высокая точность позиционирования достигается благодаря небольшим зазорам и крутильной жесткости

Минимальный крутильный зазор получаемый путем попарного подбора допуска без напряжений




соединительная плата

Двигатель

Адаптационная

Зажимная втулка

Технические параметры

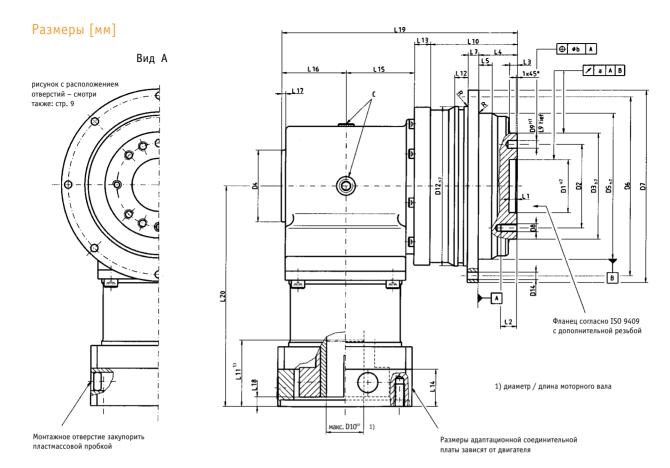
Конструкционная величин	a		TPK 010	TPK 025	TPK 050	TPK 110			
Максимальный Т _{2В}	Nm	i = 5, 7, 10, 14, 62	100	300	650	-			
момент		i = 20, 42, 122, 182	80	250	500	-			
ускорения ¹⁾		i = 5, 7, 10, 14, 20, 42	-	-	-	1100			
		i = 62				1600			
		i = 122, 182	-	-	-	1300			
{ритический момент ²) Т _{2Not}	Nm		250	625	1250	2750			
Номинальный Т _{2N}	Nm	i = 5, 7, 10, 14, 62	50	170	370	-			
зращающий момент		i = 20, 42, 122, 182	35	100	220	-			
на приеме		i = 5, 7, 10, 14, 20, 42	-	-	-	640			
		i = 62	-	-	-	1230			
		i = 122, 182	-	-	-	700			
Макс. скорость п _{1маг}	_{кс.} мин ⁻¹	2-ступенчатая		4500	4000	3500			
вращения привода		3-ступенчатая	6000	6000	4500	4000			
Номинальная п _{1N}	мин ⁻¹	i = 5, 7	1600	1400	1000	700			
скорость вращения		i = 10, 14, 20	2300	1900	1500	1000			
на приеме ³⁾		i ≥ 42	3300	3300	3300	2900			
Передаточные і		2-ступенчатая		5 / 7 / 10	/ 14 / 20				
отношения		3-ступенчатая			122 / 182				
Крутильный j _t	агсмин	стандартный			4				
зазор		сокращенный		€	2				
Крутильная С _{t21}	Nm/arcмин	2-ступенчатая			107				
жесткость	,	3-ступенчатая і = 182	17	43	88	280			
Макс. осевая сила ⁴⁾	N N	3	2150	4150	6130	10050			
Макс. изгиб. мом. М _{2Км}			235	413	1295	3064			
Зращающий момент Т ₀₁₂	Nm	i = 5		3,2					
колостого хода ⁵⁾		i = 42		······································	2	7			
(n ₁ =3000 rpm)		i = 62	0,75						
(<u>1</u> ,		i = 182				3			
Устойчив. против сгиб. С _{2К}	Nm/arcмин	. 101	225	550	560	1452			
Коэффициент η	%	2-ступенчатая		≥ 9		2,132			
толезного действия при п		3-ступенчатая		≥ 9					
Вес м	кг	2-ступенчатая	7,0	11,5	23,0	48,0			
JCC PI	K.	3-ступенчатая	4,9	7,0	13,8	29,3			
Смазка		5 crynen aran		е передаточное мас					
_{Смазка} Так			CHITCHITCERO		RAL 5002	OC. N 130 VULZU			
гак Рабочие положения					указать в заказе				
аоочие положения Предельная рабочая темпера	TVD2 °C			люоое, просим - 10°С д	-				
			OP WIL			ภาวนห			
Таправление вращения					одинаковое направление двигателя и передачи IP 64				
Степень защиты	nE/A\			117	U 4				
Громкость работы	дБ(А)		≤ 68	≤ 70	≤ 71	≤ 72			

¹⁾ 1000 циклов в час.

Пересчетная таблица:

1 in.lb = 0.113 Nm 1 in.lb.s² = 1130 kgcm² 1 lb_f = 4.44 N 1 lb_m = 0.4535 kg

 $^{^{2)}}$ Допускается 1000 раз во время срока годности.


³⁾ При прогнозированных высших скоростях вращения просим связаться с фирмой alpha.

При температуре окружающей среды 20°С (при высших наружних температурах скорости вращения n1N следует сократить).

⁴⁾ Относительно середины фланца.

⁵⁾ При рабочей температуре 20°C.

Страница 13

Конструкци	онная ве <mark>личина</mark>	TPK 010	TPK 025	TPK 050	TPK 110
Ступени пер	редачи	2/3	2/3	2 / 3	2/3
a		0,03	0,03	0,03	0,04
)		0,02	0,02	0,02	0,02
		3xM8x1	3xM12x1,5 / 3xM8x1	3xM12x1,5 / 3xM8x1	3xM12x1,5
)1 F	1 7	31,5	40	50	80
)2		50	63	80	125
)3 h	17	63	80	100	160
)4		42/40	54/40	70/42	100/54
)5 h	17	90	110	140	200
)6		109	135	168	233
)7		118	145	179	247
8		7xM6	11xM6	11xM8	11xM10
)9 F	1 7	6	6	8	10
)10 ²⁾ F	7	19 / 14	28 / 14	35 / 19	48 / 28
)12 h	17	95	120	152	212
)14		8x5,5	8x5,5	12×6,6	12x9
.1		6	6	6	8
.2		10	12	15	20
.3		6	6	6	8
.4		30	29	38	50
.5		10	10	12	15
.7		7	8	10	12
.9		7	7	7	10
.10		59	65	80	101,5
.11 ²⁾ м	иин.	23 / 15	30 / 15	32 / 23	45 / 30
M	иакс.	40 / 30	50 / 30	60 / 40	82 / 50
.12		10	10	12	15
.13		12 / 16,5	12 / 18	17,5 / 20	33,5 / 25,7
.14 ²⁾		22 / 15	28 / 15	30,5 / 22	37,5 / 28
15 ²⁾		49,5 / 32	51 / 32	72,5 / 49,5	87 / 51
16		43 / 37,5	48 / 37,5	58 / 43	83 / 48
.17		10,5 / 7,5	3 / 7,5	5,5 / 10,5	8/3
.18 ²⁾		6,2 / 3,7	6,7 / 3,7	5,2 / 6,2	9,3 / 6,7
.19	1	63,5 / 145	176 / 152,5	228 / 192,5	305 / 226,2
L20		44 / 123,5	166 / 123,5	189,5 / 144	253 / 166
R		0,4	0,4	0,4	0,4

²⁾ Размеры зависят от двигателя

Моменты инерции массы J₁ [кгсм²] в отношении привода

Величина	Передаточное соотношение і 2-ступенчатое					Передаточное соотношение і 3-ступенчатое			
передачи	5	7	10	14	20	42	62	122	182
TPK 010	3,54	3,42	2,39	2,36	2,35	0,673	0,671	0,666	0,666
TPK 025	12,4	12,0	8,18	8,09	8,03	0,688	0,678	0,666	0,666
TPK 050	28,8	27,2	18,5	18,1	18,0	2,42	2,40	2,35	2,34
TPK 110	200	192	95,9	93,9	92,8	8,41	8,27	8,05	8,03

 $^{{\}sf J}_{\scriptscriptstyle 1}$ не зависит от диаметра моторного вала

Быстрый подбор передачи

Более подробный подбор передачи - смотри: стр. 16 по 20

Циклическое действие S5	
(касается количества циклов ≤	1000)

время включения ≥ 60 %

1. Определение макс. момента ускорения двигателя

T_{1BMot} [Nm]

2. Определение макс. момента ускорения, появляющегося во время приема привода от передачи Т_{2b} [Nm]

$$T_{2b} = T_{1BMot} \times i$$

3. Сравнение макс. появляющегося момента ускорения $T_{2b} \ [Nm]$ с макс. допускаемым моментом ускорения Т2В [Nm] при приеме привода от передачи

 $T_{2h} \leq T_{2B}$

4. Сравнение диаметра моторного вала $D_{Mot} \, [{\mbox{mm}} \, {\mbox{m}}]$ с размером D10 [мм]

$$D_{Mot} \leq D10$$

5. Сравнение длины моторного вала L_{Mot} [мм] с размерами L11 [мм]

$$L11_{min} \le L_{Mot} \le L11_{max}$$

работа в непрерывном режиме S1 (следует применять уплотнительные прокладки фирмы Viton, укажите в заказе)

время включения ≥ 60 %

1. Определение номинального момента двигателя

T_{1NMot} [Nm]

2. Определение номиналь. вращат. мом. Т2n [Nm] появляющегося во время приема привода от передачи Т_{2п} [Nm]

$$T_{2n} = T_{1NMot} \times i$$

3. Сравнение отмеченного номинального вращат. мом. T_{2n} [Nm] с допускаемым номинальным вращат. мом. 7. Сравнение длины моторного вала L_{Mot} [мм] T_{2N} [Nm] во время приема привода от передачи

$$T_{2n} \leq T_{2N}$$

n_{1n} [мин⁻¹]

4. Определение достигнутой скорости вращения привода

5. Сравнение появляющейся скорости вращения привода n_{1n} [мин-1] с допускаемой номинальной скоростью вращения n_{1N} [мин $^{-1}$]

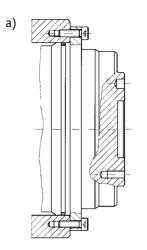
$$n_{1n} \leq n_{1N}$$

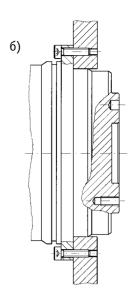
6. Сравнение диаметра моторного вала $D_{Mot}\left[\text{мм}\right]$ с размером D10 [мм]

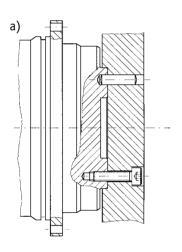
$$D_{Mot} \leq D10$$

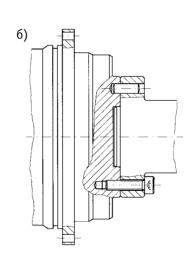
с размером L11 [мм]

$$L11_{min} \le L_{Mot} \le L11_{max}$$

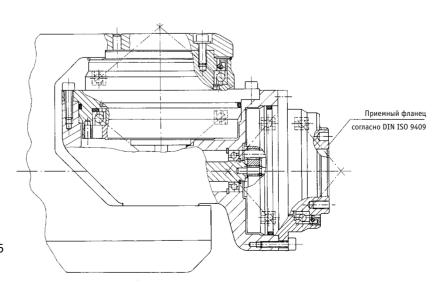



Монтажные варианты


Варианты монтажа с корпусом


Из двух возможностей центрирования корпуса вытекают указанные рядом монтажные варианты.

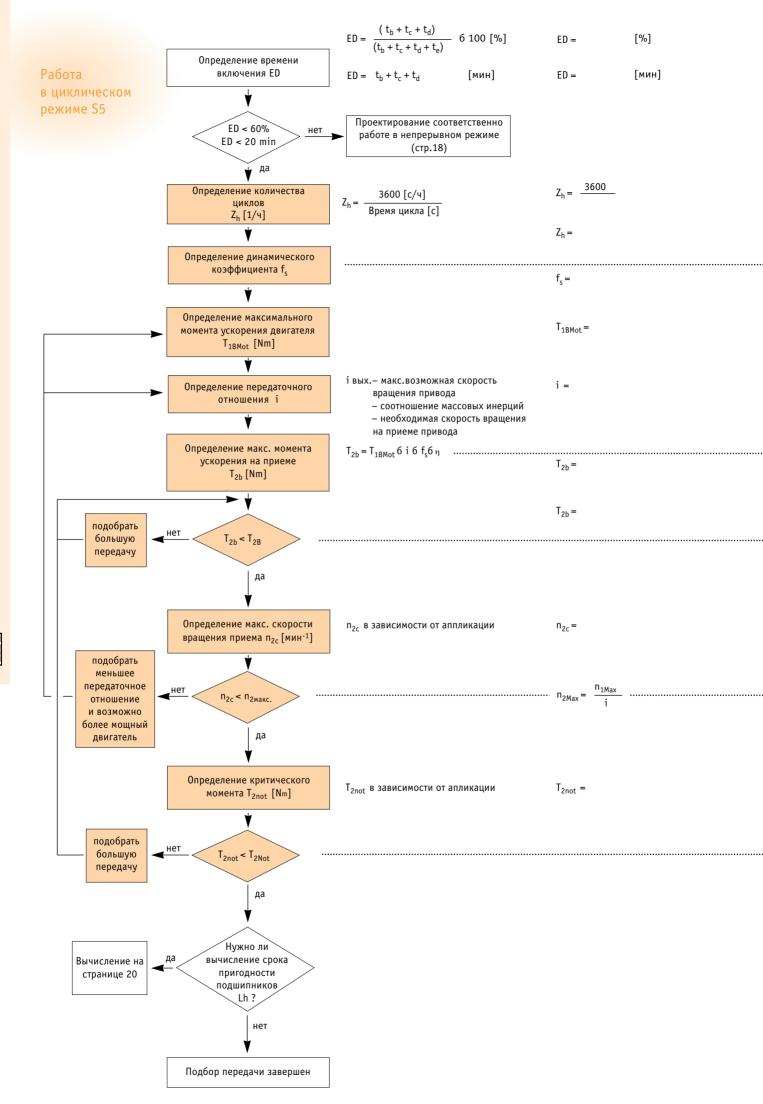
В случае выбора возможности а) для уплотнения корпуса передачи возможно использование 0-ring.



Монтажные варианты с приемным фланцем

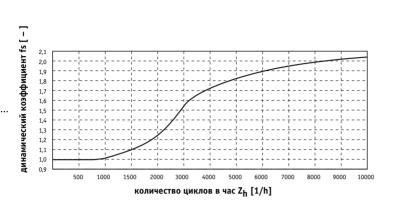
Приемный фланец ISO обеспечивает две возможности центрирования, а также одно определяющее отверстие

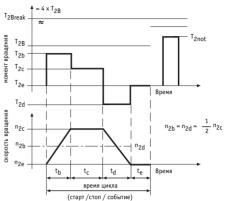
- а) наружнее центрирование
- б) внутреннее центрирование



Примерный монтаж: ТР 010 и ТР 025


Патрон в плече робота





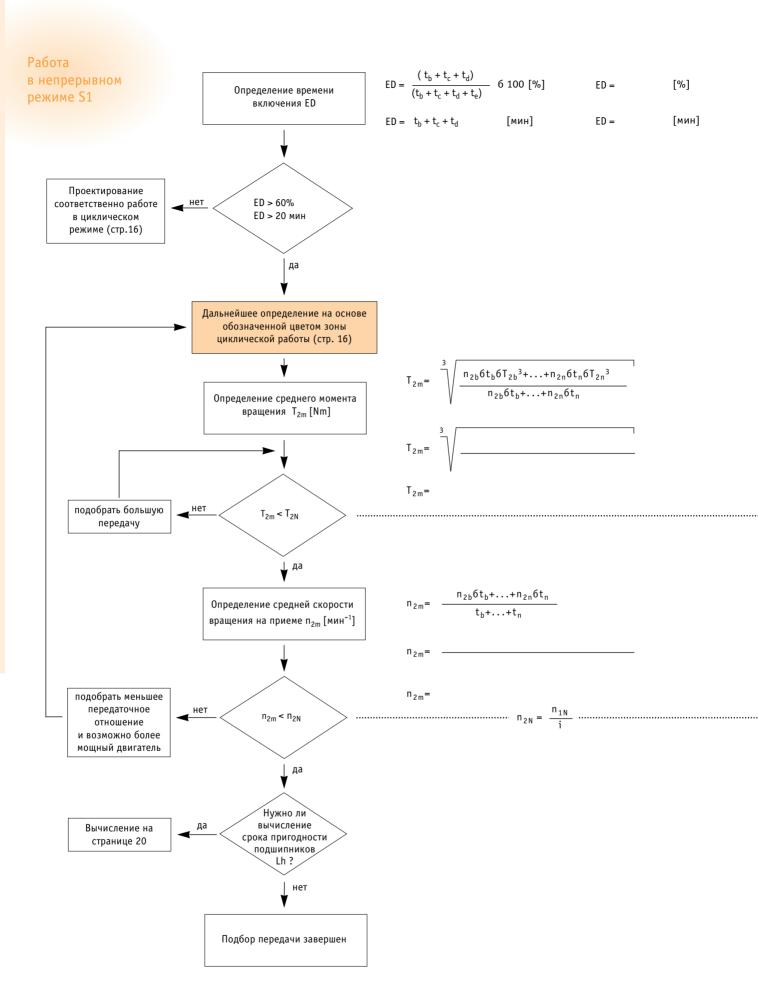
Высокие числа циклов в сочетании с коротким временем ускорения могут приводить к колебаниям в полосе приема

Вариа	Вариант						
M	1-ступенчатая	≥96					
	2-ступенчатая	≥93					
S	1-ступенчатая	≥95					
	2-ступенчатая	≥92					
K	2-ступенчатая	≥93					
	3-ступенчатая	≥90					

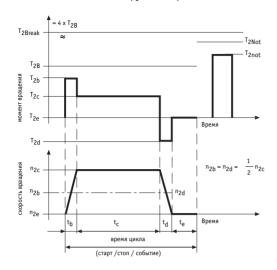
Вариант		TP004 ¹⁾	TP010	11025	12050	TP110	1P300 ¹⁾	TP500 ¹⁾
M/S	i=5/7/31	40	100	300	650	-	-	-
	i=10/21/61/91	32	80	250	500	-	-	-
	i=5/7/10/21	-	-	-	-	1100	-	-
	i=31	-	-	-	-	1600	3500	6000
	i=61/91	-	-	-	-	1300	2800	4800
K	i=5/7/10/14/62	-	100	300	650	-	-	-
	i =20/42/122/182	-	80	250	500	-	-	-
	i=5/7/10/14/20/42	-	-	-	-	1100	-	-
	i=62	-	-	-	-	1600	-	-
	i=122/182	-	-	-	-	1300	-	-
	M/S	i=10/21/61/91 i=5/7/10/21 i=31 i=61/91 K i=5/7/10/14/62 i=20/42/122/182 i=5/7/10/14/20/42 i=62	M/S i=5/7/31 40 i=10/21/61/91 32 i=5/7/10/21 - i=31 - i=61/91 - K i=5/7/10/14/62 - i=20/42/122/182 - i=5/7/10/14/20/42 - i=62 -	M/S i=5/7/31 40 100 i=10/21/61/91 32 80 i=5/7/10/21 i=31 i=61/91 K i=5/7/10/14/62 - 100 i=20/42/122/182 - 80 i=5/7/10/14/20/42 i=62	M/S i=5/7/31 40 100 300 i=10/21/61/91 32 80 250 i=5/7/10/21 i=31 i=61/91 TOWN SET	M/S i=5/7/31 40 100 300 650 i=10/21/61/91 32 80 250 500 i=5/7/10/21 i=31	M/S i=5/7/31 40 100 300 650 - i=10/21/61/91 32 80 250 500 - i=5/7/10/21 1100 i=31 1600 i=61/91 1300 K i=5/7/10/14/62 - 100 300 650 - i=20/42/122/182 - 80 250 500 - i=5/7/10/14/20/42 1100 i=62 1600	M/S i=5/7/31 40 100 300 650 i=10/21/61/91 32 80 250 500 i=5/7/10/21 1100 - i=31 1600 3500 i=61/91 1300 2800 K i=5/7/10/14/62 - 100 300 650 i=20/42/122/182 - 80 250 500 i=5/7/10/14/20/42 1100 - i=62 1600 1600 1600 1600

¹⁾ доступно только в варианте М

Вариант			TP0041)	TP010	TP025	TP050	TP110	TP300 ¹⁾	TP5001)
n _{1макс}	M/S	1-ступенчатая	6000	6000	4500	4000	3500	-	-
		2-ступенчатая	0000	0000	6000	5000	4500	3000	3000
[MUH ⁻¹]	K	2-ступенчатая	-	6000	4500	4000	3500	-	-
		3-ступенчатая	-		6000	4500	4000	-	-


 $^{^{1)}}$ доступно только в варианте М

	Вариант	TP0041)	TP010	TP025	TP050	TP110	TP300 ¹⁾	TP500 ¹⁾
T _{2Not} [Nm]	M/S/K	100	250	625	1250	2750	8750	15000


¹⁾ доступно только в варианте М

Вычисления необходимые для подбора передач можем по Вашему желанию провести в нашей фирме

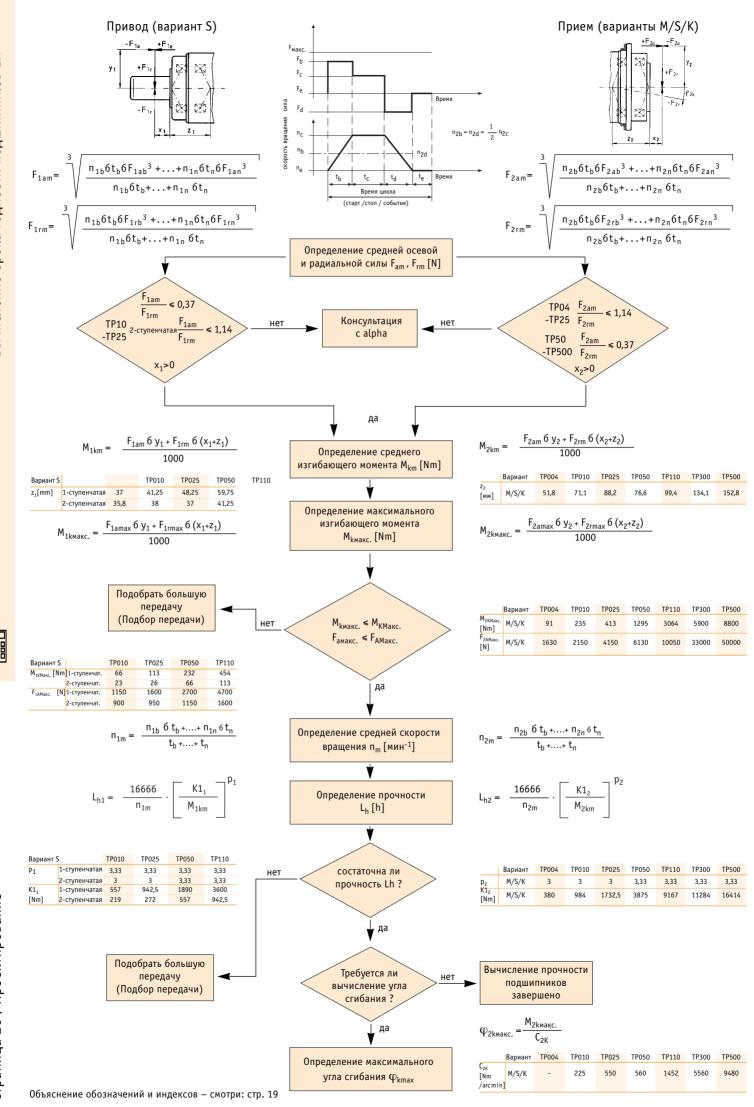
Обычный блок нагрузки на приеме

Если во время работы в непрерывном режиме передача будет нагружаться моментом меньшим или равным номинальному вращающему моменту T_{2N} , то зубчатое зацепление не подлежит процессам усталости.

При скоростях вращения привода меньших или равных номинальной скорости вращения n_{1N} , в посредственных атмосферных условиях передача не будет нагреваться до температуры превышающей 90° С

	Вариант			TP010	TP025	TP050	TP110	TP3001)	TP5001)
T_{2N}	M/S	i=5/7/31	25	50	170	370	-	-	-
		i=10/21/61/91	15	35	100	220	-	-	-
[Nm]		i=5/7/10/21	-	-	-	-	640	-	-
		i=31	-	-	-	-	1230	2200	3700
		i=61/91	-	-	-	-	700	1600	2900
	K	i=5/7/10/14/62	-	50	170	370	-	-	-
		i=20/42/122/182	-	35	100	220	-	-	-
		i=5/7/10/14/20/42	-	-	-	-	640	-	-
		i=62	-	-	-	-	1230	-	-
		i=122/182	-	-	-	-	700	-	-

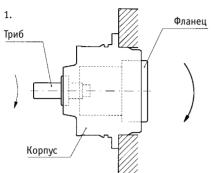
¹⁾ доступно только в варианте М


	Вариант			TP010	TP025	TP050	TP110	TP3001)	TP500 ¹⁾
n_{1N}	М	i=5/7	3000	2500	2000	1600	1100	-	-
		i=10	3500	3000	2500	2100	1600	-	-
		i=21/31	4500	3800	3100	2600	2100	1600	1300
		i=61	6000	4700	3700	3300	2600	1900	1500
		i=91	6000	5300	4500	4100	3300	2200	1800
	S	i=5/7	-	1300	1000	800	600	-	-
		i=10	-	1500	1300	1100	800	-	-
[мин ⁻¹]		i=21/31	-	1900	1600	1300	1100	-	-
		i=61	-	2400	1900	1700	1300	-	-
		i=91	-	2700	2300	2100	1700	-	-
	K	i=5/7	-	1600	1400	1000	700	-	-
		i=10/14/20	-	2300	1900	1500	1000	-	-
		i≽ 42	-	3300	3300	3300	2900	-	-

¹⁾ доступно только в варианте M

Орозначение	Единица	название
С	Nm/arcмин	Жесткость
ED	%	Время включения
F	N	Сила
f _s	-	Динамический коэффициент
i	-	Передаточное отношение
j	агсмин	Зазор
K1	Nm	Коэф. для вычисл. подшипников
L	h	Прочность
M	Nm	Момент
n	МИН ⁻¹	Скорость вращения
p	-	Показатель для вычисл. подшипников
η	%	Коэффициент полезного действия
t	S	Время
T	Nm	Вращающий момент
x	MM	расстояние радиальной силы
		от заплечика вала
У	мм	расстояние осевой силы
		от заплечика вала
Z	мм	Коэф. для вычисления подшипников
Z	1/h	Количество циклов

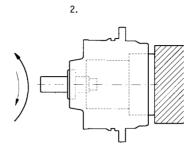
Индексы	
Заглавные буквы	Допускаемые величины
Малые буквы	Отмечаемые величины
1	Привод
2	Прием (привода)
A/a	Осевой
B/b	Ускорение
Break	Разрушение (трещина)
С	Постоянная
d	Опоздание
e	Пауза
h	Часы
K/k	Сгибающий
m	Средний
Maks/maks	Максимальный
Mot	Двигатель
N	Номинальный
Not/not	Критический (аварийный)
0	Холостой ход
R/r	Радиальный
t	Крутка



Страница 21 | Проектирование

Рабочие возможности

В передачах ТР ведущий триб, приемный фланец или корпус передачи могут приводится или могут передавать привод на прием, или же составлять постоянный элемент

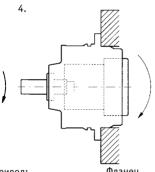


 Привод:
 Триб

 Прием:
 Фланец

 Постоянный элемент:
 Корпус

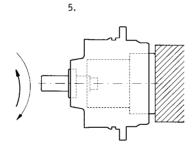
i₁ = i


Привод: Триб Прием: Корпус Постоянный элемент: Фланец

i₂ = - (i - 1)

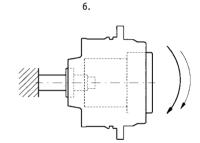
Привод: Прием: Постоянный элемент: Корпус Фланец Триб

$$i_3 = \frac{1}{i-1}$$



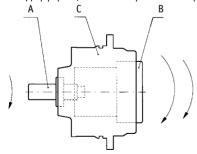
 Привод:
 Фланец

 Прием:
 Триб


 Постоянный элемент:
 Корпус

 $i_4 = \frac{1}{i}$

Привод: Корпус Прием: Триб Постоянный элемент: Фланец


 $i_5 = -\frac{1}{i_{-1}}$

Привод: Прием: Постоянный элемент: Фланец Корпус Триб

$$i_6 = \frac{i-1}{i}$$

7. Дифференциальная и переставная передача

Для подузлов действует формула

$$n_A - i 6 n_B - (1 - i) 6 n_C = 0$$

 n_A : скорость вращения триба n_B : скорость вращения фланца n_C : скорость вращения корпуса

Постоянный эемент

і: Передоточное отношение

 i_{1-6} : Передаточное отношение для отдельных видов работы

Страница 22 | Проектирование

010 - MF2 - 61 - 021/Motor - V3 Ключ для заказывания передач Тип передачи рабочее положение (смотри ниже) TP 004 / TP 010 / TP 025 / TP 050 / TP 110 / TP 300 / TP 500 Обозначение двигателя (изготовитель – тип) Вариант передачи не указывается в вариантах Е- и S-М = передача устанавливаемыя на двигателе "М" Е = блок для самостоятельной застройки "Е" Определение зазора S = сепарированный вариант "S" 1 = стандартный TP 004 / TP 300 / TP 500 tylko "M" 2 = сокращенный Диаметр отверстия зажимной втулки Исполнение передачи F = стандартное исполнение Вариант М: цифровое обозначение (смотри таблицу) Вариант Е: 0 = только приводной триб Уплотнительные прокладки с FPM (VitronR) Х = специализированная передача Вариант S: 0 = съемный вал гладкий 1 = съемный вал со шпоночной канавкой Количество ступеней перадачи 1 = 1-ступенчатая Форма фланца приема 2 = 2-ступенчатая 0 = стандартное исполнение 4 = специализированное исполнение

Цифровое обозначение диаметров отверстий для зажимных втулок (ТР)

2-ступенчатая = 21 / 31 / 61 / 91

2-ступенчатая = 31 / 61 / 91

TP 004 – TP 110: 1-ступенчатая = 5 / 7 / 10

Передаточное отношение і

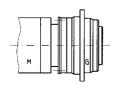
TP 300 + TP 500:

Ступени передачи	1	2	1	2	1	2	1	2	1	2	2	2
Ø моторного вала [мм]*	TP (004	TP	010	TP	025	TP (050	TP 1	10	TP 300	TP 500
10	x	x	х	1	x	х	х	х	х	x	x	x
11	1	1	2	2	x	2	х	1	х	x	х	x
14	2	-	3	3	3	3	х	2	х	1	x	x
19	-	-	4	-	4	4	3	3	х	2	x	x
24	-	-	-	-	5	-	4	4	х	3	x	x
28	-	-	-	-	6	-	х	-	х	4	х	x
32	-	-	-	-	-	-	5	-	5	x	x	x
35	-	-	-	-	-	-	6	-	х	6	1	x
38	-	-	-	-	-	-	-	-	7	-	-	x
48	-	-	-	-	-	-	-	-	8	-	-	1

* В случае диаметров моторного вала не указанных в таблице прибавить 2 мм и подобрать следующее значение.

- = выбрать следующее, большее значение

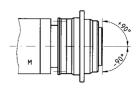
х = выбрать следующую, большую цифру обозначения

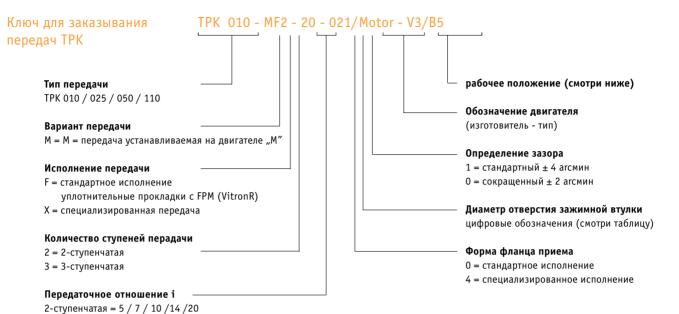

Систанционные трубки

Если диаметры моторного вала и зажимной втулки друг другу не подходят

тогда следует применить дистанционную трубку

Рабочие положения


M = двигатель B5 — горизонтальное G = передача


V1 — вертикальное со съемным валом, направленным вниз

V3 – вертикальное со съемным валом, направленным вверх

S = отклоняемое от горизонтального положения на $\pm 90^{\circ}$

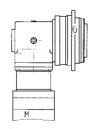
Цифровое обозначение диаметров отверстий для зажимных втулок (ТРК)

3-ступенчатая = 42 / 62 / 122 / 182

Ступени передачи	2	3	2	3	2	3	2	3
Ø моторного вала [мм]*	TPK	010	TPK	025	TPK 0	50	TPK 1	110
14	х	3	х	3	х	Х	Х	x
19	4	-	х	-	x	3	Х	x
28	-	-	6	-	×	-	Х	4
35	-	-	-	-	6	-	Х	-
48	-	-	-	-	-	-	8	-

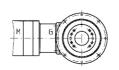
- * В случае диаметров моторного вала не указанных в таблице прибавить
- 2 мм и подобрать следующее значение.

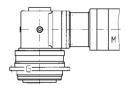
- = выбрать следующее, большее значение
- х = выбрать следующую, большую цифру обозначения

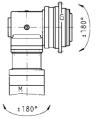

Дистанционные трубки

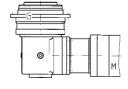
Если диаметры моторного вала и зажимной втулки друг другу не подходят

тогда следует применить дистанционную трубку

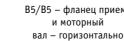

Рабочие положения


B5/V3 – фланец приема горизонтально, моторный вал направленный вверх

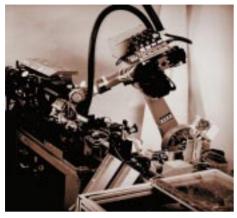

B5/V1 - фланец приема горизонтально, моторный вал направленный вниз


В5/В5 - фланец приема и моторный

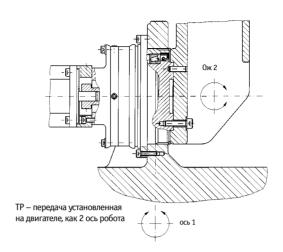
V1/B5 – фланец приема вертикально вниз, моторный вал - горизонтально

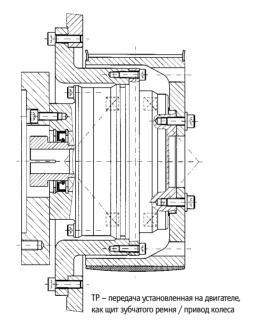


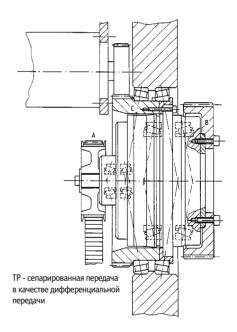
S = отклоняемое на 360°

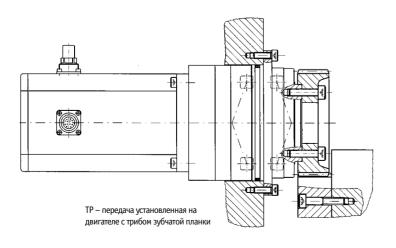


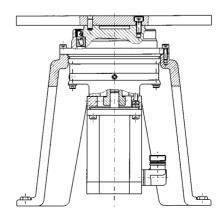
V3/B5 - фланец приема вертикально вверх, моторный вал - горизонтально






Примеры установки и применений




КUKA – промышленный робот IR 363/6.0

TP — передача установленная на двигателе, в качестве поворотного стола

